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In this article, we consider the risk management for mid-term planning of a global
multi-product chemical supply chain under demand and freight rate uncertainty. A
two-stage stochastic linear programming approach is proposed within a multi-period
planning model that takes into account the production and inventory levels, transporta-
tion modes, times of shipments, and customer service levels. To investigate the poten-
tial improvement by using stochastic programming, we describe a simulation frame-
work that relies on a rolling horizon approach. The studies suggest that at least 5%
savings in the total real cost can be achieved compared with the deterministic case. In
addition, an algorithm based on the multi-cut L-shaped method is proposed to effec-
tively solve the resulting large scale industrial size problems. We also introduce risk
management models by incorporating risk measures into the stochastic programming
model, and multi-objective optimization schemes are implemented to establish the
tradeoffs between cost and risk. To demonstrate the effectiveness of the proposed sto-
chastic models and decomposition algorithms, a case study of a realistic global chemi-
cal supply chain problem is presented. © 2009 American Institute of Chemical Engineers
AIChE J, 55: 931-946, 2009
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Introduction

Global supply chains in the process industries are usually
very large scale systems that can be comprised of up to hun-
dreds of or even thousands of production facilities, distribu-
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tion centers and customers. Because of competition in the
global marketplace, process industries are facing increasing
pressure to manage their supply chains so as to reduce costs
and risks."? To achieve this goal, effective mathematical
tools for large-scale supply chain optimization, particularly
for cost reduction and risk management, have drawn signifi-
cant attention.’

This article is motivated by a real world application origi-
nating at The Dow Chemical Company, which has several
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global business units that supply multiple products to world
wide customers. A large business unit can spend well into
the hundreds of millions of dollars every year on its supply
chain to handle and distribute the products. A deterministic
planning model can be a useful tool to help the business
units reduce costs by taking into account the flexibility in the
system to shift production, inventory, and shipping volumes
in such a way that customer demand is met while costs are
minimized. However, due to inaccurate forecasts of customer
demands and energy prices, supply chain planning gives rise
to various types of financial risks. Because addressing these
problems is a non-trivial task, it is the objective of this work
to develop optimization models and solution algorithms for
the risk management of large scale supply chain tactical
planning under demand and freight rate uncertainties.

We consider in this article the problem of midterm plan-
ning for a large scale multiproduct supply chain under
demand and freight rate uncertainty for which a two-stage
stochastic linear programming approach is proposed, incorpo-
rating into a multi-period planning model that takes into
account the production and inventory levels, transportation
modes, times of shipments and customer service levels. In
the two-stage framework, the production, distribution and in-
ventory decisions for the current time period are made
“here-and-now” before the resolution of uncertainty, whereas
the decisions for the rest of the time periods are postponed
in a “wait-and-see” mode. A resulting challenge is that a
large number of scenarios are required because the problem
includes a very large number of uncertain parameters due to
the multi-period nature and the large size of the supply chain
network. To reduce the model size and the number of scenar-
ios, we use a Monte Carlo sampling approach to discretize
the continuous probability distribution functions and to gen-
erate the scenarios. To quantify the cost saving achieved by
modeling uncertainty in supply chain planning, we describe a
simulation framework that relies on a “rolling horizon”
approach. Simulation studies on the case problem suggest
that at least 5% saving in the total cost can be achieved by
using the stochastic approach compared with the determinis-
tic one. To solve the resulting large scale industrial size
problems effectively, an algorithm based on the multi-cut L-
shaped method is proposed. As an additional enhancement,
we introduce four risk management models by incorporating
different risk measures into the proposed stochastic program-
ming model. Different risk metrics, including variance, vari-
ability index, probabilistic financial risk and downside risk
are used to explicitly measure the risks arising from uncer-
tain customer demands and freight rates which allow manag-
ing these risks according to the decision maker’s preference.
Multi-objective optimization schemes are also developed to
tradeoff the cost minimization and risk minimization objec-
tives for the global supply chain planning. To demonstrate
the effectiveness of the proposed stochastic models and
decomposition algorithms, a realistic case study of a global
chemical supply chain problem is presented.

The problem addressed in this article has a number of
novel features. First, we incorporate Monte Carlo sampling
in a stochastic programming framework to reduce the number
of scenarios for a real world application. Secondly, we pro-
pose a simulation framework based on iteratively solving
deterministic and stochastic programming problems so as to
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quantitatively assess the cost savings achieved by the use of
stochastic programming. The third feature is that we take
into account the selection of different transportation modes
with different transportation times in the stochastic program-
ming model and the simulation framework. To our knowl-
edge, planning problems that consider transportation time
and transportation modes under uncertainty have not been
addressed in this manner. An additional feature is that we
implemented a multi-cut L-shaped method to solve the large
scale problem from a real world case study. The proposed
algorithm proved to be very effective for solving large-scale
stochastic linear programming problems. Moreover, we pres-
ent a comprehensively comparison of several risk manage-
ment models for planning under uncertainty.

The rest of this article is organized as follows. Section 2
reviews some relevant literature on supply chain tactical
planning under uncertainty and risk management. The gen-
eral problem statement is given in Section 3. Section 4
presents the two-stage stochastic programming model. A sim-
ulation framework to quantify the different costs by using
the stochastic and deterministic approaches is proposed in
Section 5. An efficient algorithm to solve the industrial size
problems is presented in Section 6. Section 7 presents the
risk management models, along with a comparison between
different risk measures and the solution quality. Numerical
results from a real world case study of a large-scale global
chemical supply chain problem are presented in Section 8.
Finally, Section 9 concludes on the performance of the pro-
posed stochastic models and decomposition algorithms.

Literature Review

Tactical supply chain planning typically covers a midterm
time horizon of between few months to 1 year, and decisions
cover issues such as production, inventory and distribution.*
Related work includes, for instance, the one by Wilkinson
et al.,” who propose an approach to integrate production and
distribution in multisite facilities using the resource task net-
work framework. Bok et al..° propose a multiperiod supply
chain optimization model for operational planning of contin-
uous flexible process networks where sales, intermittent
deliveries, production shortfalls, delivery delays, inventory
profiles and changeovers costs are taken into account. A bile-
vel decomposition algorithm was proposed, which reduced
the computational time significantly. Jackson and Gross-
mann’ present a temporal decomposition scheme based on
Lagrangean decomposition for a nonlinear programming
problem model for multi-site production and distribution
planning, where nonlinear terms arise from the relationship
between production and physical properties or blending
ratios. Chen and Lee® present a multi-product, multistage and
multiperiod production and distribution planning model.
They also proposed a two-phase fuzzy decision making
method to obtain a compromise solution among all partici-
pants of the multi-enterprise supply chain. A multiproduct
supply chain planning model with consideration of duty
drawback is proposed by Oh and Karimi.’ Recently, Guillen
et al.,'” present a mixed-integer linear programming model
for tactical planning and operational scheduling of chemical
supply chains with multi-product, multi-echelon distribution
networks with consideration of financial management issues.
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All of these models are deterministic supply chain planning
models that do not take into account the uncertainties or risks
in the supply chain planning process.

A number of approaches have been proposed in the chemi-
cal engineering literature for the quantitative treatment of
uncertainty in the design, planning and scheduling problems.
A classification of different areas of uncertainty for batch
chemical plant design is suggested by Subrahmanyam
et al.,'" where uncertainty in prices and demand, equipment
reliability and manufacturing are taken into account. The
authors used a scenario-based approach, which attempts to
capture uncertainty by representing it in terms of a number
of discrete realizations of the stochastic quantities, constitut-
ing distinct scenarios. The objective is to find a solution that
performs well on average under all scenarios. The scenario-
based approach provides a straightforward way to implicitly
account for uncertainty. Its major drawback is that the prob-
lem size increases exponentially as the number of scenarios
increases. This is particularly true when using continuous
multivariate probability distribution with Gaussian quadrature
integration schemes. These difficulties can sometimes be cir-
cumvented by analytically integrating continuous probability
distribution ~functions for the random parameters.'*"?
Although this approach can lead to a reasonable size deter-
ministic equivalent representation of the probabilistic model,
this is often at the expense of introducing nonlinearities into
the model. Furthermore, the nonlinear terms in the resulting
deterministic equivalent problems are often nonconvex
requiring global optimization techniques.'*™"” A recent popu-
lar method to address the uncertainty is to use Monte Carlo
sampling in the scenario planning framework'®'? and then
combine it with statistical methods to determinate the num-
ber of required scenarios so as to achieve a desired level of
accuracy.20 By using this method, the required number of
scenarios in the stochastic program can be significantly
reduced, while the solution quality can be guaranteed at the
desired level.?' In this work, we use the Monte Carlo sam-
pling method to deal with large scale supply chain planning
problem under uncertainty.

In the stochastic programming models, the total expected
performance measure is optimized so as to obtain optimal
solutions that perform well on average for all the scenarios.
However, standard stochastic programming methods usually
do not provide any control on the solution’s variability over
the different scenarios. In other words, the decision makers
are assumed to be risk-neutral. One may have different atti-
tudes towards the risk, thus the supply chain risks should be
controlled and managed based on the decision makers’ pref-
erence. Related works about risk management includes, for
instance, Eppen and Martin®> who propose the downside risk
as a risk measure and incorporated it into a two-stage sto-
chastic programming model for the production capacity plan-
ning under demand uncertainty in auto industry. Later, Mul-
vey et al.,> describe a robust optimization model to control
the mean value and variance of the objective functions in
stochastic programs. Ahmed and Sahinidis>* propose the
upper partial mean as a measure of risk and apply it in the
long-term chemical process planning. Applequist et al.,” dis-
cuss risk premium as a measure that provides the basis for a
rational balance between expected value of investment per-
formance and variance. Recently, Barbaro and Bagajewicz*®
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introduced the probabilistic financial risk as a metric of risk
for planning under uncertainty problems. Similar techniques
are presented by Bonfill et al.,”’ for managing financial risk
in scheduling problems. The probabilistic financial risk mea-
sure is also used for refinery planning®® and short term
scheduling with pricing policies.29

Problem Statement

The problem addressed in this article can be stated as fol-
lows. We are given a midterm planning horizon (for instance,
1 year), which can be subdivided into a number of time peri-
ods (for instance, 1 month as a time period). A set of prod-
ucts are manufactured and distributed through a given global
supply chain that includes a large number of world wide cus-
tomers and a number of geographically distributed plants and
distribution centers. All the facilities (plants and distribution
centers) can hold inventory and are connected to each other
by an associated transportation link. Each customer is served
by one or more facilities with specified transportation links.
A simplified version of the network is shown in Figure 1.
The network has multiple echelons whereby material may
flow from the manufacturing plant through several distribu-
tion centers on its way to the final customer. Freight rates
are specific to the transportation link involved and depend on
distance and mode of transport. Generally, the transportation
links are classified into two types, one is from a facility to
another facility (plant or distribution center), and the other
one is from a facility to a customer.

Besides the supply chain network topology, we are also
given the minimum and initial inventory of each facility. The
inventory holding costs and the facility throughput costs are
already known, together with future monthly demand of each
product by each customer. The transportation time of each
shipping lane is known and should be taken into account.

The uncertainties arise from the customer demands and
freight rates. The values of these uncertain parameters follow
some probability distribution (such as, but not restricted to,
normal distribution) with given mean and variance. Usually,
the probability distribution of the uncertain parameters can
be obtained by fitting the historical data for different proba-
bility distributions, or based on expert opinions. The mean

&J Plarts ﬁDis[ribu‘h’un Centers E Customers
Figure 1. Global chemical supply chain.

[Color figure can be viewed in the online issue, which is
available at www.interscience.wiley.com.]
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values of these uncertain parameters typically come from
forecasting, and the variances come from historical data.'” Tt
is important to note that we allow the demands and freight
rates to have different levels of uncertainties changing with
time. For example, in January the uncertain demand of May
has a standard deviation as much as 20% of the mean value,
but in April the standard deviation of that demand of May
reduces to 5% of the mean value due to more accurate fore-
casting and information. Different levels of uncertainties are
very important for the operations of industrial supply chains,
and should be taken into account in the models.

The problem is to determine the monthly production* and
inventory levels of each facility, and the monthly shipping
quantities between network nodes such that the total
expected cost and the total risks of the global supply chain
are minimized while satisfying customer demands over the
specified planning horizon.

Stochastic Programming Model
Two-stage approach

We consider a two-stage stochastic —programming®
approach to deal with different levels of uncertainties and
incorporate it into a multi-period planning model that takes
into account the production and inventory levels, transporta-
tion modes and times of shipments and the customer service
levels.” In the two-stage framework, the production, distribu-
tion and inventory decisions for the current time period are
made “here-and-now” prior to the resolution of uncertainty,
whereas the decisions for the rest of the time periods are
postponed in a “wait-and-see” mode after the uncertainties
are revealed. The scenario planning approach is used to rep-
resent the uncertainties. A resulting challenge is that a large
number of scenarios are required because the problem
includes a very large number of uncertain parameters due to
the multi-period nature of the model and the large size of
global supply chain network. To reduce the model size and
the number of scenarios, we use a Monte Carlo sampling
approach to generate the scenarios. Each scenario is then
assigned the same probability with the summation of the
probabilities for all the scenarios equal to 1."819 For exam-
ple, if we use Monte Carlo sampling to generate 100 scenar-
ios, the probability of each scenario is given as 0.01. The
number of scenarios is determined by using a statistical
method?>?' to obtain solutions within specific confidence
intervals for a desired level of accuracy. This method is very
effective for scenario reduction, particularly for large-scale
problems. As an example, for a problem with 51900 gcenarios,
a sample size of around 400 can find the optimal solution
with probability 95%.%°

Mathematical formulation

In this work, we use a multi-period formulation to allow
the costs and sourcing decisions to change with time while

*The model could be also easily extended to deal with weekly production plan-
ning (or even shorter time interval) by changing the length of time periods.

In principle, the problem can be formulated as a multi-stage stochastic pro-
gramming model. To reduce the computational efforts we only consider a two-
stage approach.
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taking into account the transportation time for each shipment.
The model includes five types of constraints. They are mass
balance constraints for the production plants, distribution
centers and customers, together with the constraints for pro-
duction capacity and minimum inventory levels. The defini-
tion of sets, variables and parameters of the model are given
at the end of this article. Note that exchange rates, taxes,
tariffs and duty drawbacks use linear approximations’' and
are taken into account in the parameters of freight rates and
facility throughput costs. The mathematical formulation of
the multi-period linear programming planning model is given
in the following sections.

Mass Balance for Plants. Let us consider the mass bal-
ance for plant k product j at the first time period (r = 1). At
the first time period (¢ = 1), all the decisions are assumed to
be independent of the future scenarios. The mass balance for
the plant k € K, product j at the first time period (t = 1) is
then given as follows.

kK jm, N (,j— kit
ZZF mt"’zzskumt Ik) I

k'eK meM reR meM
+ Wi + Z Z Fukjmi—ig, e Yk €Ky, t=1 (1)
k'eK meM

Equation 1 states that the total freight shipped from plant
k € K,, to other facilities and customers with all the transpor-
tation modes m € M should be equal to the changes in inven-
tory plus the production amount and the volume shipped to
plant k € K, from other facilities. Because we need to con-
sider the transportation time during the shipping process, the
input freight coming from other facilities should start at the
time period of ¢ — Jp ;. so that the freight can arrive at the
destination at time period ¢, where Ay, is the shipping
time from facility &’ to plant k € K, of product j with trans-
portation mode m.

For the remaining time periods (+ > 2) contained in the
second stage time periods, most of the decisions will be the
second stage decisions. So for plant k € K, product j at time
period ¢+ > 2 for scenario s, the mass balance can be
expressed as follows.

Z Z Fi jmes + Z Z Strdmts = Tiji1s — Tk jus

k'eK meM reR meM

AWijies + Z Z Fu kjmi—ig s VS k €Kp, 122 (2)
k'eK meM

Equation 2 is similar to Eq. 1, but all the variables are
replaced by the second stage variables, i.e., related to sce-
nario s. It is important to note that for the second time period
(t = 2), the term I, , in Eq. 2 refers to the ending inven-
tory level of the first time period, which is a first stage deci-
sion independent of scenarios. Similarly, if the freight
Fy kjma—ig,,,s starts from the first time period, ie., 1 =
e gjm + 1, then the freight is also a first stage decision in-
dependent of the scenario.

Mass Balance for Distribution Centers For the distribu-
tion centers, the mass balance equation is very similar to that
for a plant; only the production term W, ;, is missing. So for
distribution center k € Kpc and product j in the first time pe-
riod (¢ = 1), the mass balance equation is given by:
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Z Z Fk,k’l/',m,t + Z Z Sk,r,j.m,t = I]?J - Ik:/',t

k'eK meM reR meM

+ Z Z Fk’.k,/',m.tfl‘\k/‘k_j_ma Vj7 ke KDC7 r=1 (3)

k'eK meM

For the remaining time periods (¢ > 2) and scenario s, the
mass balance is given by:

Z Z FkAk’,j,m,t,x + Z Z Sk,rj,m,r,x = ]k,j,r—l,s - ij.t,x

k'eK meM reR meM
3D Fokjmiigyns Vs k€Kpe, 122 (4)
k'eK meM

Similarly, for the second time period (+ = 2), the term
Iij:—1,s in Eq. 4 refers to the ending inventory level of the first
time period, which is a first stage decision. Thus, Iy,
should be replaced by ;. ;,—; when ¢ = 2. Similarly, shipments
Fp jjme — Jiim S that originate in the first time period, i.e.,
t = Jwxjm + 1, are first stage decisions independent of the
scenarios and should be replaced by Fy ., — s

Mass Balance for Customers. To satisfy the demand of
product j at customer 7 in time period ¢, the sum of all ship-
ments from other facilities (plants and distribution centers)
via all the shipping modes m starting at time period ¢ =
Airjm (and arriving at customer 7 at time period ) should be
no less than the demand (d,;,,). To satisfy certain service
levels and to ensure the constraint is feasible, we introduce a
positive slack variable SF,;, to quantify the unmet demand.
Hence, the mass balance for product j at customer r in the
first time period ( = 1) and scenario s can be formulated as
follows:

SN Skrimiiis + SFrjus = drjus, Vrijis ;=1 (5)

keK meM

For the remaining time periods (¢ > 2) and scenario s, the
mass balance for product j at customer r is given as:

SN Skrimiiiss + SFrjas Z drjus, Vrijs, t>2 (6)

keK meM

Note that in constraint (6), we consider customer demand
as the lower bound of the sales. One could also enforce the
sale to be equal to the demand by changing constraint (6) as
an equality.

Capacity Constraints. The production amount (Wy;,,
Wi jss) of each plant (k € K;,) should not exceed the capacity
(Quyr k€ Kp).

Wi < Okjs

Wijrs < Ok

Vi, t=1, k€K, o)
Vi, 122, keK, ®)

Minimum Inventory Constraints. The minimum inventory
of product j in facility k at each time period ¢ should be sat-
isfied. Egs. 9 and 10 model this constraint.

Ieje 2 Il Vhjit=1 ©)

m
Iijs 2 1) 4

Vk,j,s,t>2 (10)

Objective Function: Expected Total Cost. The objective
function of this stochastic linear programming model is to
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minimize the total expected cost that includes the first stage
cost, Costl, plus the expected second stage cost. Since the
scenarios follow discrete distribution, the expected second
stage cost is equal to the product of the scenario probability,
ps, and the associated second stage scenario cost, Cost2,
summed over all the scenarios s.

E[Cost] = Costl + Y _ p; - Cost2, (11)

ses

Both the first stage cost and the second stage scenario
costs are equal to the sum of the following items:

1. Inventory holding cost for all products at all facilities
for all time periods

2. Freight cost for inter-facility freight shipments in all
the shipping lanes of all the products in all time periods

3. Freight cost for facility-customer shipments in all the
shipping lanes of all the products in all the time periods

4. Facility throughput cost for inter-facility shipments for
all the shipping lanes of all the products in all the time periods

5. Facility throughput cost for facility-customer shipments
for all the shipping lanes of all the products in all the first stage
time periods

6. Penalty costs of all the products for lost unmet demand
of all the customers in all the time periods

Thus, the first stage cost is given as,

Costl = Z Z Z hijiliji

keK jeJ t=1

+ Z Z Z Z Z Vi jum kK jmt

kekK K'eK jeJ meM t=1

+ Z Z Z Z Z Vk,l‘,j,nz,tsk,r,jﬁnz,z

keK reR jeJ meM t=1

T2 00 D D i uwime

keK k'eK jeJ meM t=1

+ Z Z Z Z Z 6/\'.j~tsk,rj7m,t (12)

keK reR jeJ meM t=1

The cost of each scenario s is equal to,

Cost2,= Z Z Z hijidkjis

keK jel t>2

+ Z Z Z Z Z Vk,k’,f.m,r,st,k’,j,nz.t,s

keK K'eK je] meM t>2

+ Z Z Z Z Z ykJ',/’,nl.,t,sS/\'.,r,/lm,r,s

keK reR jeJ meM t>2

+ Z Z Z Z Z 5kJ,rFk.,k',f,m,t,s

keK k'eK jeJ meM t>2

FD DD DD OkieStrimes

keK reR jeJ meM >2

+ Z Z Z n"J,tSFr',/‘,t.s, Vs (13)

reR jel 1€l

Minimizing the objective function in (11)-(13), subject to
the constraints in (1)—(10), we can obtain the solution for the
two-stage stochastic programming model. However, because
the number of scenarios may be too large, we use a sampling
scheme as discussed in the next section.
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Figure 2. Simulation framework.

[Color figure can be viewed in the online issue, which is
available at www.interscience.wiley.com.]

Calculation of confidence interval

The number of scenarios is determined by the desired level
of accuracy of the solution, which can be measured by the
confidence interval of the expected total cost. The confidence
interval can be calculated as follows. The Monte Carlo sam-
pling variance estimator of the result for a stochastic
programming problem, which is independent of the probabil-
ity distribution of the uncertain parameters, is given bylg’19

n 2
S(n) = \/zs1 (E[Cost] — Costy) (14

n—1

where n is the number of scenarios and Cost; is the total cost
of scenarios.
Then the confidence interval of 1—o is given as:

[E[Cost} B Zy25(n) ’ 2y25(n)

vn vn

where z,, is the standard normal deviate such that 1—o/2
satisfies for a standard normal distributed variable z ~ N(O,
1), Pr(z < z,55) = 1 — o/2. For example, for 95% confidence
interval (i.e., I — a = 95%), we have z,, = 1.96.

On the other hand, if we are given the sampling estimator
S (n) and the desired confidence interval H, the minimum
number of scenarios required can be determined by,

2
N — [Z"‘/Z_S(”)] (16)

E[Cost] + (15)

H

Therefore, to determine the number of scenarios N, we
first solve the stochastic programming model with a small
number of scenarios n (such as 10-100), to estimate the
value of sampling estimator S(n) by using Eq. 14. Then using
Egs. 15 and 16, we can determine the required number of
scenarios for a desired confidence interval >*!

Simulation framework

To assess the impact of using the stochastic programming
approach, we developed a simulation framework. The basic
idea is to compare the simulated operations of two planners,
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one using a deterministic model for planning and the other
one using a stochastic model for planning (Figure 2). At the
beginning of each time period, the stochastic planner will
run the two-stage stochastic programming model with the
current time period (for instance, month) as the first stage
time period in the model and the remaining time periods as
the second stage time period. After a solution is returned, the
stochastic planner will execute the decisions for the current
time period. Similar actions will be taken by the determinis-
tic planner using the deterministic model. After both planners
execute their decisions, the system randomly generates the
information for demands and freight rates. These include the
realization of the uncertain parameters for the current time
period, and the forecasting values of demands and freight
rates for the future time periods. Both planners then update
their information. The stochastic planner uses the information
for both mean values and variances of the uncertain parame-
ters (including the demands and freight rates), whereas the
deterministic planner only uses the mean values of the uncer-
tain parameters. Once the information is updated both plan-
ners move on to the next time period.

The entire system operates under a rolling horizon
approach as shown in Figure 3. For example, if the planning
horizon is 12 months and January is the current time period,
the stochastic planner will run the stochastic model with the
decisions for January as the first stage decisions and the deci-
sions for this February to December as the second stage deci-
sions. After the problem is solved, the planner will execute
the decisions for January only. Then, in the next iteration the
decisions for February are considered as the first stage deci-
sions, and the decisions for this March to the following Janu-
ary are treated as the second stage decisions. The process
continues until decisions are executed for December. The
deterministic planner follows a similar process using the
deterministic model and mean values of the uncertain
parameters.

This process gives rise to a rolling horizon where the first
time period of the model is moving forward but the length of
the planning horizon is unchanged. The process once initi-
ated continues until an entire year’s decisions have been
made. In this way we simulate the typical planning cycle car-
ried on in an industrial setting.

There are several issues that require special attention in
this simulation framework. The first one is initial conditions.
The previous time period’s ending inventory represents the

-8
ap= %

afp = 1

oy = 2P

| | | Mar | Apr | May | Jun | Jul | Aug | Sep | Ot | Nov | Dec |

I} -

-

revealed | uncertain I

Figure 3. Rolling horizon strategy.

[Color figure can be viewed in the online issue, which is
available at www.interscience.wiley.com.]
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initial inventory of the new time period. For example, in the
second iteration (for the decisions of February), the ending
inventory of January should be treated as the initial inventory
of February.

Another issue we need to take into account is the transpor-
tation time. All inter-facility shipments initiated in previous
time periods should be treated as pipeline inventories and
considered as part of the initial inventories at the destinations
in the arrival time periods. For example, if in the first itera-
tion, the planner decides to ship some product from one fa-
cility to another and the shipment takes two time periods to
arrive, then the amount of this shipment should be consid-
ered as part of the initial inventory of the destination for
March in the next two iterations, i.e., the second time period
in the second iteration and the first time period in the third
iteration (Figure 3). Similarly, for a shipment from a facility
to a customer, the amount of the shipment should be consid-
ered as part of the demand realization in future time periods
if the transportation time exceeds one time period.

The third issue is the difference in demand and freight rate
uncertainty depending on the length of the forecast. As the
rolling horizon moves forward, the variance of the uncertain
demand for a particular time period will change because we
consider different levels of uncertainty for different forecast-
ing horizons. This must be taken into account in the simula-
tion. For example in Figure 3, the demand for March has a
standard deviation of 10% of the mean value in the first and
second iterations, but in the third iteration, March becomes
the first time period and the standard deviation of demand is
reduced to 5% of the mean value.

A final issue that must be dealt with is the variation in the
results that are obtained for a simulated year due to the ran-
dom customer demand driving the optimization. In other
words, the difference between the stochastic case and the
deterministic will vary in different simulation cycles
because the demands encountered may be different. To
address this variation the simulation system iterates through
a selected number of simulation cycles to produce data that
can be used to report statistics of the difference between the
annual performance of the stochastic case and the determin-
istic case. This process gives rise to an inner loop stepping
though the time periods (for instance, months) and an outer
loop iterating through simulation cycles (for instance,

years). A flow chart of the whole simulation framework is
shown in Figure 4.

Solution algorithm

Stochastic programming models that rely on scenarios are
often computationally very demanding because their model
size increases exponentially as the number of scenarios
increases. In particular, the deterministic equivalent of the
problem addressed in this article cannot be solved directly
due to its very large size (see Section 8 for details). There-
fore, we need an effective algorithm to overcome the compu-
tational challenges. A popular method for solving stochastic
programming models is the L-shaped method,’*>? which
takes advantage of the special decomposable structure of the
two-stage stochastic programming model. Consider the fol-
lowing general form of the two-stage stochastic programming
model (P0).

(PO) m;n cTx+ Zpsquys (17)
s sES
st. Ax=b, x>0 (18)
Wys = hy — Tyx, y(ws) >0, s€S (19)

where x is the vector that stands for the first stage decision
variables, and y, are the second stage decisions for each sce-
nario s. Equation 17 stands for the objective function given
in 11-13. Equation 18 stands for the constraints without sec-
ond stage decisions, i.e., constraint (1), (3), (7), and (9) in
the stochastic programming model. Equation 19 is for the
second stage constraints, i.e., constraint (2), (4), (5), (6), (8),
and (10) in the stochastic programming model. ¢ and ¢, are
the vector of coefficients for the first and second stage deci-
sions in the objective function, i.e., the unit inventory, ship-
ping, throughput, and penalty costs. A and b are parameter
matrix independent of the scenarios, whereas W, h,, and T
are parameter matrix for each scenario s € S.

The expanded version of the general model (P0) is given
in Eq. 20. We can see that the model has a special “angular”
form, which can be decomposed into a master problem and a
number of scenario subproblems.

Min c'x + pigiyi + pagiye + Psdy s
s.t. Ax = b — Master problem
T\x + Wiy =
Tox + W2y, =h
i B | 0)
+ =: secnario subproblems
+ _.
Tx + Wiys = hy
x>0, y1 =20, y20, ys =20
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[Color figure can be viewed in the online issue, which is
available at www.interscience.wiley.com.]

The basic idea of the standard L-shaped method is to first
solve the model with those constraints that do not include
the second stage variables to obtain the values of first stage
decisions. Then we fix the first stage decisions and solve all
the scenario sub-problems that include second stage decisions
to obtain the optimal values of the second stage decisions.

If we define O (x) as the objective function value of each
scenario subproblem s,

Os(x) = n;tn quYX

s.t. Wy =hy —Tex, y(ws) >0 21)

then the reformulation of (P0) is as follows,

(P0) min c"x+ ) p0s(x) (22)
* ses
st. Ax=b, x>0 (18)

To solve (P0), we can take advantage of the dual proper-
ties of (21) by introducing a new variable 0 for 3 p,Os(x),

=
and iterate between the master problem (P1) and tfle scenario
subproblems (P2).
The master problem (P1) is given by,

(P1) min ¢'x+0
x,0

st. 0>ex+d, [=1...N (23)
Ax=b, x>0 (18)

whereas the subproblem (P2) for scenario s is given by,
(P2) min ¢y,
¥s
s.t. Wyy = hy — Tex, y(wg) >0 21)

where the inequalities in (P1) are the “cuts” that link the
master problem and the scenario subproblems. ¢; and d; are
coefficients for the Benders cut, and they are given by,

€r = ZprnzTY (24)
seS§
d; = penlhs (25)
ses
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where 7 are the optimal dual vectors of constraint (21) in
the subproblem (P2) for scenario s.

The major steps for the L-shaped method are given in Fig-
ure 5. In this algorithm, we first solve the master problem to
obtain a lower bound of the objective value. We then fix all
the first stage decisions and solve each scenario subproblem
to get an upper bound. If the lower bound and the upper
bound are within a tolerance, then the algorithm stops. Other-
wise, we use the duals of the scenario sub-problems to add a
cut and return to the master problem.

The standard L-shaped method only returns one cut to the
master problem during each iteration. To speed up the algo-
rithm we can decompose the variable 0 by scenario to return
as many cuts as the number of scenarios in each iteration.
The master problem is then given by (P3).

P3 i T 0
(P3)  min Tx+ Y pibs

seS
st. 0,>epx+dy, [=1...N (26)
Ax=b, x>0 (18)

where the coefficients ey and dg for the cut (26) are updated
as follows

5 = pYTETTv (27)
dsl = PrvaThv (28)

The algorithmic framework for multi-cut L-shaped method
is similar to the standard L-shaped method, and is given in
Figure 6.

Although the multi-cut L-shaped method can provide
stronger cuts to the master problem and reduce the number
of iterations, it introduces more variables in the objective
function of the master problem, which may potentially slow
down the computation. Computational results for comparing
these two algorithms are presented in Section 8. We should
also note that convergence is guaranteed in both cases.***

Risk Management Models

In the stochastic programming model we optimize the total
expected cost to obtain the optimal solutions that are optimal
on average for all the scenarios. However, the expected total

Solve master problem to get | el
¢ &8t Ar=¢b
a lower bound (LB) L
0> exr+d
xz0
Add cut 7 Solve the sub problem to get | -~ min oy
o= ZP"’H Ts an ugper baund (UB) ''51. Wy=hs=Ta
L]
di =% pom] ha ¥20
&

UB-LB < Tel?

Figure 5. Algorithm for standard L-shaped method.

[Color figure can be viewed in the online issue, which is
available at www.interscience.wiley.com.]
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cost is a risk-neutral objective that cannot manage the risks
explicitly. On the other hand, some decision makers are risk-
averse and would like to manage the risks and improve the
economic objective simultaneously. This requires extending
the aforementioned stochastic programming for risk manage-
ment. To manage the risk, we need first to define a metric
for risks. For comparison purpose, we consider in this work
four popular risk measures including variance,” variability
index,?* probabilistic financial risk?® and downside risk.??

Managing the variance

Because of the uncertain environment the total realized
cost is also uncertain (see Figure 7). This cost has a mean
value and a variance. Our objective in the stochastic pro-
gramming model is to minimize the expected value of the
total cost, whereas the variance of the total cost is not
addressed. Thus, it is possible that an optimum solution may
have low expected cost but a large variance. Application of
such a solution would therefore involve a high amount of
risk in that the possibility exists for the realized cost to be
far higher than the expected value. If a decision maker is
risk adverse such a solution would not be satisfactory. There-
fore, we may want to find a “robust” solution that would
yield similar results but also considers the variance of the so-
lution. The risk management by variance is also called “ro-
bust optimization” in most of the Operations Research litera-
ture.”® In robust optimization, we not only minimize the
expected total cost, but also minimize the variance of the
total cost. Because the original stochastic programming solu-
tion is the minimum expected cost solution, the solution
from robust optimization usually results in higher expected
cost but with less variance.

Because risk is measured by variance, a straightforward
extension to reduce its value is to add a variance term to the
objective function of the stochastic program. This yields a
goal programming formulation to reduce both the expected
cost and the variance. The new objective function is:

min E[Cost] + p - V[Cost] = Costl+ Zps - Cost2,
s€S
2

+p- > pe || Dopy - Cost2y | — Cost2g|  (29)

ses s'eS
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where the expected cost term is equal to the first stage cost
(Costl) plus the expected second stage cost (D, p; - Cost2,).
The variance term (V[Cost]) is equal to the mean square
error between the expected second stage cost (> p; - Cost2y)
s'eS

and the second stage scenario cost (Cost2;). The coefficient p
in the objective function is the weight coefficient for the var-
iance. For different values of p we can tradeoff lower
expected cost with lower cost variance.

In summary, the variance management model includes the
objective function given in (12), (13), and (29) subject to
constraints (1)—(10).

Managing the variability index

The variance management model is a straightforward
approach to reduce both expected value and variance of cost,
but it includes quadratic terms in the objective function (29)
that makes the optimization problem difficult to solve for
large scale problems. To circumvent this problem an alterna-
tive is to use the positive deviation between the scenario
cost (Costl + Cost2;) and the expected cost (Costl +
Sy Py - Cost2y). Ahmed and Sahinidis®™ defined the vari-
ability index (or called “upper partial mean”) as a non-nega-
tive continuous variable A for each scenario that is defined
by the following constraints:

A, > Cost2, — (Z Py ‘COStZYr), A >0, seS (30)

Equation 30 states that if the scenario cost (cost,) is less
than the expected cost (E[Cost]), A, would be 0; If the cost,
is greater than the E[Cost], A, would be equal to their posi-
tive difference. This reformulation, which can be interpreted
as a l-norm measure of the variance, yields a linear pro-
gramming problem which can be solved more efficiently.

The objective function of the variability index manage-
ment model is to minimize the weighted sum between total
expected cost and the expected variability index. Thus, the
variability index management model is as follows:

min E[Cost] + p - Zps i (B

seS§

Expected
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Figure 7. Robust optimization.

[Color figure can be viewed in the online issue, which is
available at www.interscience.wiley.com.]
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s.t. Ay > Cost2, — (ZS, Py - Cost2sr)7 A >0, s€S
Constraints (1)—(10) (30)

Similarly, for different values of the weighted parameter
p, we can tradeoff the expected cost and the cost variability
index.

Managing the probabilistic financial risk

Sometimes decision makers are not satisfied with a robust
solution in which the variance of the cost is limited. Instead
they are more concerned with the extremes of the cost
spread. For example they may want a lower probability of
high cost or a higher probability of low cost. In this case, we
can use another risk measure, the so called probabilistic fi-
nancial risk.”® This measure is defined as the probability that
the real cost is higher than a certain threshold or target Q
(Figure 8). By reducing the probabilistic financial risk for
threshold or target Q, we can reduce the risk of having high
costs.

Using the target €, risk can be defined as the probability
of the cost being greater than Q. For a scenario planning
model we can introduce a binary variable Z;, such that Z
equal to 1 if Cost; > Q, otherwise equal to 0.

To define the value of the binary variables Z;, Barbaro and
Bagajewicz”® proposed the following Big-M constraints:

Cost;, <Q+M-Z;,, seS 32)

Cost;, >Q—-M-(1-2), se€S (33)
where M is a sufficient large positive parameter. Constraints
(32) and (33) state that if the scenario cost Cost is greater
than the target Q, Z; must be 1 or else constraint (32) will be
violated; if the scenario cost Cost, is less than the target (Q,
Z, must be O or else constraint (33) will be violated. By
doing this, we define Z; as an indicator for each scenario.

Thus, the probabilistic financial risk is equal to the sum-
mation over all the scenarios for the product of the scenario
probability and the binary variable Z,.

940 DOI 10.1002/aic

Published on behalf of the AIChE

Risk(x,Q) = Pr[Cost(x) > Q] = Zps A (34)

seS

The probabilistic financial risk management model is then
follows:

min E[Cost] = Costl + ZPS - Cost2, (11)
ses
min  Risk(xQ) => p;-Z (34)
ses
st. Cost; <Q+M-Zg,seS (32)
Cost, >Q—M-(1—2,),5€S (33)

Constraints (1)—(10)

This model has two objective functions: to minimize the
probabilistic financial risk in (34) and minimize the expected
total cost in (11)—(13), subject to the constraints (1)—(10),
(32), and (33). As there are two conflicting objective func-
tions, the corresponding problem yields an infinite set of Par-
eto-optimal solutions for which it is not possible to improve
both objective functions simultaneously.34

To obtain the Pareto-optimal curve for the bi-criterion
optimization problem, one of the objectives is specified as an
inequality with a fixed value for the bound which is treated
as a parameter. There are two major approaches to solve the
problem in terms of this parameter. One is to simply solve it
for a specified number of points to obtain an approximation
of the Pareto optimal curve, which is the e-constraint
method.> The other is to solve it as a parametric program-
ming problem,35 which yields the exact solution for the Par-
eto optimal curve. Although the latter provides a rigorous so-
lution approach, the former is simpler to implement. For this
reason we have selected the first approach. The procedure
includes the following three steps. The first one is to mini-
mize the expected cost E[Cost] to obtain the minimum
expected cost, which in turn yields the largest Pareto optimal
risk Risk(x,Q2). The second step is to minimize Risk(x,Q) that
yields the smallest Pareto optimal expected risk Risk(x,(2).
The last step is to fix the risk Risk(x,Q) to discrete values
between the smallest and greatest value, and optimize the
model by minimizing E[Cost] at each selected point. In this
way we can obtain an approximation to the Pareto-optimal
curve, together with the optimal planning decisions for dif-
ferent values of probabilistic financial risk.

Managing the downside risk

In the aforementioned probabilistic risk management
method, a binary variable is required for each scenario to
calculate the probabilistic financial risk. Thus, the risk man-
agement model size will be very large as the number of sce-
narios increases. To avoid the integer variable, we can use
downside risk*? instead of probabilistic risk for financial risk
management. The basic idea is to introduce a positive devia-
tion variable V, defined as the variability index of scenario s.
The variable , is defined as the positive deviation between
the target Q and the scenarios cost Cost,. If the scenario cost
Cost, is less than the target Q, , is equal to 0. If the sce-
nario cost Cost, is greater than the target Q, V), is equal to

April 2009 Vol. 55, No. 4 AIChE Journal
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[Color figure can be viewed in the online issue, which is
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their difference. These conditions can be enforced with the
following inequalities:
Y, >Cost; —Q, Y, >0, s€S (35)

Then the downside risk associated with target Q, is defined
as follows,

DRisk(x,Q) =) P, -, (36)

Thus, we have the downside risk management model as
follows:

min E[Cost] = Costl + Z ps - Cost2 (11)
s€S

min DRisk(x,Q) :ZYPS g (36)

st. Yy >cost;—Q, Y, >0, s€S (35)

Constraints (1)—(10)

Similar to the probabilistic financial risk management
model, a downside risk management model also has two
objective functions: to minimize the total expected cost in
(11)—(13) and to minimize the downside risk in (36), subject
to the constraints (1)—(10), and (35). The optimal solutions
of this multi-objective optimization model also yield a Pareto
curve, which can also be obtained by using the ¢-constraint
method.

Case Study

In this section, we present a case study to demonstrate the
effectiveness of the proposed models and algorithms. The
problem is based on the global supply chain of a major com-
modity chemical producer. Some basic information about the
global supply chain is discussed. The results for the stochas-
tic programming model, simulation framework, decomposi-
tion algorithms, together with the results for different risk
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management models are presented and discussed. All the
instances are modeled with GAMS?® and solved with CPLEX
solver on an IBM T60 laptop with an Intel Core Duo 1.83
GHz CPU and 1GB RAM. The optimality tolerances for all
the instances in the case study are set to be 0.

Basic information of the case study

In the case study we consider a planning horizon of one
year, which is subdivided into 12-time periods, i.e., | month
as a time period. Two products are produced and distributed
in a global supply chain, consisting of 5 plants, 13 distribu-
tion centers, 121 transportation links and 46 customers. The
customer demands and freight rates, which are uncertain, fol-
low normal distributions with the forecast as the mean value
and the variance coming from the historical record. The
demand uncertainty has three levels of standard deviations
(see Figure 3). For the current month the standard deviation
of demand is 5% of the mean value, in the coming 3 months
(i.e., 2-4 month), the standard deviation is 10% of the mean
value; for the remaining 8 months, the demand has a stand-
ard deviation of 20% of the mean value. Similarly, the
freight rate has two levels of uncertainty. For the current
month, the variance is 0 (i.e., deterministic case); in the
remaining 11 months, the freight rate has a standard devia-
tion of 10% of the mean value. All the other data about the
supply chain, such as the unit cost coefficients, capacities,
minimum inventory levels, are omitted due to confidentiality
reasons.

Results for Stochastic Programming Models
and Simulation

We solve the case study with a sampling size of 600 sce-
narios. The results are given in Figures 9 and 10. The mini-
mum total expected cost is $183.32 MM. The 95% confi-
dence interval of the expected cost is given $0.37MM above
and below this value, which is relatively small compared
with the expected cost.

E[Cost] - $182.32 +0.37 MM (600 scenarios)

0.27

024

021

Probability

170 173 176 1739 182 185 188 131 o4 17 200
Cost {§ MM)
Figure 10. Histogram of the results for the two-stage
stochastic programming model with 600
scenarios.

[Color figure can be viewed in the online issue, which is
available at www.interscience.wiley.com.]
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Figure 11. Simulation results for the real costs of 1
year planning.

[Color figure can be viewed in the online issue, which is
available at www.interscience.wiley.com.]

To quantify the cost saving by using stochastic program-
ming, we implement the simulation framework for the case
problem. We used a sampling size of 1000 scenarios and
simulated 100 iterations. Year-by-year results are given in
Figure 11. The operational cost from stochastic planning is
always less than the operational cost from deterministic plan-
ning. On average, 5.70% cost saving was achieved by using
the stochastic programming approach. Figure 12 shows the
components of the average operational cost for both
approaches. Figures 13 and 14 are the comparisons on the in-
ventory levels and sourcing for one of the production facili-
ties. As can be seen, by using the stochastic programming
approach, the production facility holds less inventories com-
pared with the one with deterministic approach (Figure 13),
and thus the sourcing amounts for this facility by stochastic
approach are fewer (Figure 14).

As a sensitivity analysis, we doubled the uncertainty levels
(increased the standard deviations of the uncertain parameters
to 200% of the original setting), the results are shown in Fig-

[ Etochastic Approach
B Dicterministic Approad

FreightCosts  Throughput Costs  Inventory Costs  Shortfall Penalty

Figure 12. Average component real costs for two
planners.

[Color figure can be viewed in the online issue, which is
available at www.interscience.wiley.com.]
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Figure 13. Comparison on inventory levels for one pro-
duction facility.

[Color figure can be viewed in the online issue, which is
available at www.interscience.wiley.com.]

ure 15. As can be seen, larger cost savings can be achieved
by using the stochastic programming approach (on average
13.95%).

Results for Multi-cut L-shaped Method

The size of the resulting stochastic programming problem
is very large. As can be seen in Table 1, the size of stochas-
tic programming model increases exponentially as the num-
ber of scenarios increases. We found that to achieve reasona-
ble confidence intervals, we needed to use 1000 scenarios.
For the stochastic programming model with 100 scenario
case, our workstation could not even generate the problem
due to its huge size, i.e., the problem cannot be solved
directly, although the deterministic model can be solved to
optimality within 1 minute. By using the standard L-shaped
method, we can obtain the optimal solution for the 1000 sce-
nario case in around 120 h with 0.001% optimality tolerance,

B Btochastic

Sourcing Aml (Klan)

o
JanllT FebelT MardT ApdT B0l Jand? Jd0T ApdT Sepd?  Oetd7 Heel7  Deed7

Figure 14. Comparison on sourcing amount for one
production facility.

[Color figure can be viewed in the online issue, which is
available at www.interscience.wiley.com.]
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whereas the proposed multi-cut L-shaped method, requires
only around 23 h to obtain the solution with the same opti-
mality tolerance. As can be seen in Figure 16, the standard
L-shaped method requires 187 iterations to converge,
whereas the multi-cut L-shaped method only needs 32 itera-
tions. The advantage of multi-cut L-shaped method for this
problem is assumed to be due to the master problem not
requiring too much solution time compared with the one in
standard L-shaped method, whereas the number of iterations
is significantly reduced due to the “multiple” cuts.

Note that this algorithm would benefit from solving it with
parallel computing, which could significantly reduce the
computational times. For example, if we were to use 100
parallel CPUs, the computational time of each scenario sub-
problem would be at most 3 sec in each CPU. If each CPU
solves 10 subproblems in one iteration, after taking into
account the solution time of master problem, one iteration of
multi-cut L-shaped method needs at most 40 sec. Thus, the
total computational time may be reduced from around 23 h
to around 20 min for the 1000 scenario instance. If we had
1000 CPUs and allow one CPU for each scenario subpro-
blem, the total computational time could be further reduced
to around 3 min.

Results for Risk Management Models

We apply the models and algorithms for risk management
discussed in Section 7.

Table 1. Model Size for the Case Problem

Stochastic Programming

Model
Deterministic 100 1,000
Model Size Model Scenarios Scenarios
Number of constraints 6,373 610,374 6,101,280
Number of variables 19,225 1,815,816 18,149,077
Number of non-zeros 41,899 4,004,697 40,028,872
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[Color figure can be viewed in the online issue, which is
available at www.interscience.wiley.com.]

Results for managing the variance

Figure 17 shows the statistics (mean and variance) of the
total cost we obtained by managing the variance with the
new objective function in (29). Here, the expected (mean)
cost increases as the weighted coefficient p increases, but the
variance decreases.

The histogram of cost distribution before and after manag-
ing the variance is shown in Figure 18. We can see that the
spread of the expected cost is much smaller after managing
the variance, but the expected cost shifts to higher costs as
compared with stochastic programming.

Results for managing the variability index

Figure 19 shows the statistics (mean and variance) of the
total cost we obtained by applying the variability index
model in (30) and (31). Here, the expected (mean) cost
increases as the weighted coefficient p increases, but the var-
iance decreases.

187 - 35

136

—= Cost (SMM)

== Varaoe
182 0

0 3 6 9 1z 15
pE-H

Figure 17. Efficient frontier for the variance reduction
model.

[Color figure can be viewed in the online issue, which is
available at www.interscience.wiley.com.]
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The histogram of cost distribution before and after manag-
ing the variability index is shown in Figure 20. Again, there
is a reduction in variability index of the total cost with a cor-
responding increase in the expected cost.

Results for managing the probabilistic financial risk

Because the probabilistic financial risk management model
is a bi-criterion optimization problem, the optimal solutions
yields an efficient frontier denoted as the Pareto curve, which
is shown in Figure 21. Here, we choose the target as $188
MM and use 1000 scenarios for the calculation. The compar-
ison of cost probability distribution for the results before and
after risk management is given in Figure 22. As we can see,
the optimal solution of stochastic programming model has
8% probability that total cost is higher than $188M, whereas
after probabilistic financial risk management, the new solu-
tion has only 2% probability to have high cost (greater than
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Figure 19. Efficient frontier for the variability index
management model.

[Color figure can be viewed in the online issue, which is
available at www.interscience.wiley.com.]
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Figure 20. Histogram of the cost distribution before
and after managing the variability index.

[Color figure can be viewed in the online issue, which is
available at www.interscience.wiley.com.]

$188M), which means that the risk of high cost has been
significantly reduced after risk management, although the
expected total cost has increased.

Results for managing the downside risk

A result after downside risk management with target at
$188MM is given in Figure 23. Similarly, we can see the
risk in the high cost area has been significantly reduced,
whereas the total expected costs have a small increase. We
can also see that after downside risk management the cost
has a much larger chance to be between $186MM and
$188MM, which is the target for downside risk management.

Discussion

By comparing the results for different risk management
methods based on our case study, we can see that total
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Figure 21. Pareto curve for probabilistic financial risk
management model.

[Color figure can be viewed in the online issue, which is
available at www.interscience.wiley.com.]

April 2009 Vol. 55, No. 4 AIChE Journal



expected cost will increase after risk management. However,
probabilistic financial risk management and downside risk
management are more effective in reducing the risk of high
cost. Managing the variance and variability, can lead to less
variance, but will usually reduce the probability of lower
costs and increase the risk of higher cost due to the shift
towards higher expected cost. Based on our case study, the
downside risk management model appears to be the best
choice because it can effectively reduce the high cost risk
and is not computationally demanding compared with the
probabilistic financial risk management.

Conclusions

In this work, we developed a two-stage stochastic linear
programming approach for the tactical planning of a global
multi-product chemical supply chain that is subjected to
uncertainties in demands and freight rates. Monte Carlo sam-
pling and the associated statistical methods are applied and
incorporated into the stochastic programming model to avoid
the large number of scenarios required. We also developed a
simulation framework to assess the potential improvement of
using stochastic programming in the supply chain planning
process compared with traditional deterministic approaches.
The results of our case study show that on average cost sav-
ings of 5.70% could be achieved by using the stochastic pro-
gramming model on a monthly basis. To solve the large
scale case study effectively, we developed a multi-cut L-
shaped solution method. Computational studies show that
significant savings in CPU times can be achieved by using
this algorithm.

To explicitly consider the risks included in the global sup-
ply chain planning process, we studied four risk management
models by using different risk measures. A real world case
study was presented to demonstrate the effectiveness of the
proposed models and algorithms. Computational studies sug-
gest that probabilistic financial risk management model and
downside risk management model are more effective in
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Figure 22. Comparison of the cost distribution before
and after managing the probabilistic finan-
cial risk (target at $188M, 2% vs. 8%).

[Color figure can be viewed in the online issue, which is
available at www.interscience.wiley.com.]
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Figure 23. Comparison of the cost distribution before
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reducing high cost risk compared with the popular variance
management and variability index management models.
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Notation
Sets/Indices

K = set of facilities (including plants and distribution centers)
indexed by k
K, = set of manufacturing plants indexed by k
Kpc = set of distribution centers indexed by k
R = set of customers indexed by r
J = set of products indexed by j
M = set of transportation modes indexed by m
T = set of time periods indexed by ¢
S = set of scenarios indexed by s

Decision variables (values: 0 to +x)

Fi jm, = inter-facility freight of product j from facility k to k' with
mode m at time period ¢
I.;, = inventory level of product j at facility k at time period ¢
Sk.rjms = facility-customer freight of product j from facility £ to cus-
tomer r with mode m at time period ¢
Wy« = production amount of product j at plant k at time period ¢,
keK,
Frx jmes = inter-facility freight of product j from facility k to k* with
mode m at time period ¢ of scenario s
Iy j.s = inventory level of product j at facility & at the end of time
period ¢ of scenario s
Sirjmas = facility-customer freight of product j from facility & to cus-
tomer r with mode m at time period ¢ of scenario s
Wi,j.s = production amount of product j at plant k at time period ¢ of
scenario s, k € K,
SF, s = unmeet demand of product j in customer  at time period ¢ of
scenario s
Cost1 = first stage cost
Cost2; = second stage cost of scenario s
Cost, = cost of scenario s

DOI 10.1002/aic 945



E[Cost] = total expected cost

A, = upper partial mean of scenario s
Y, = positive deviation between target Q and the cost of scenario s

Decision variable (values: 0 or 1)

Z; = binary variable. Equal to 1 if the cost of scenario s is larger
than target Q

Parameters

ps = probability of scenario s

d, ;s = demand of product j in customer r at time period ¢ of sce-

nario s
12 ,; = initial inventory level of product j at facility

Yk mje = freight rate of product j from facility & to k&* with mode m at

V.

Vi’

Vi

time period ¢
rjme = freight rate of product j from facility k to customer r with
mode m at time period ¢
Jmas = freight rate of product j from facility & to k* with mode m at
time ¢ of scenario s
Jmas = freight rate of product j from facility k to customer r with
mode m at time period ¢ of scenario s
hyj, = unit inventory cost of product j in facility k at time period ¢
0y.j, = unit throughput cost of product ; in facility k at time period ¢
11-j, = unit penalty cost of product j for lost unmeet demand in cus-
tomer 7 at time period ¢
Oy = capacity of plant k for product j, k € K),
I{!;, = minimum inventory of product j at facility k at time period

Aty jm = shipping time of product j from facility & to facility &” with

mode m

Akrjm = shipping time of product j from facility k to customer r with

mode m
Q = target for risk management
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